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Abstract 

Spatial judgments are affected both by fine-grained and categorical knowledge.  We investigated 

whether, and how, the two forms of knowledge are learned in real-world, navigable space as well 

as the time course of learning each type of knowledge.  Participants were Northwestern 

University undergraduates who estimated the locations of buildings and other landmarks on 

campus.   The Northwestern campus is roughly divided into three regions whose borders are not 

easy to discern either from a map or by navigation.  Nevertheless, students often refer to these 

regions linguistically and use them when making housing decisions, choosing classes, etc. We 

found that knowledge of both the fine-grained configuration of locations and the regional 

distinctions increased with time.  However, regional influences on judgments occurred later in 

students’ time on campus.  Consequently, computed distances across the nonexistent border 

between north and south campus locations became more biased with time. The results have 

implications for understanding how spatial representations develop in navigable environments.  
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Learning Fine-Grained and Category Information in Navigable Real-World Space 

One of the most consistent findings in the last 30 years of spatial cognition research is 

that mental representations of spatial information often have a categorical structure.  Several 

converging lines of research provide evidence for the psychological reality of categorical 

representations of spatial information.  For example, when asked whether Seattle or Montreal is 

farther north, people typically respond that Montreal is, although the opposite is true.  People 

make this error because they respond as if all Canadian cities are north of all U.S. cities, but this 

categorical knowledge can lead to large errors (Friedman & Brown, 2000a, 2000b; Friedman, 

Kerkman, Brown, Stea, & Cappello, 2005; Stevens & Coupe, 1978). Likewise, people 

consistently overestimate distances that cross imagined or real category boundaries, even if the 

actual physical distances are equal to or even less than comparable within-category distances  

(e.g., Carbon & Leder, 2005; Friedman & Montello, 2006; Hirtle & Jonides, 1985; Hund & 

Plumert, 2005; Newcombe & Liben, 1982; Maki, 1981; McNamara, 1986; Plumert & Hund, 

2001). 

Although categorical representations can lead to systematic distortions, they nevertheless 

serve an important function.  For example, in Huttenlocher, Hedges, and Duncan’s (1991) 

category-adjustment model of spatial location judgments, two sources of independent spatial 

information are combined in a Bayesian fashion to make location estimates from memory (see 

Cheng, Shettleworth, J. Huttenlocher, & Rieser, 2007).  One source of knowledge is fine-grained 

metric information about the location of the items. In Huttenlocher et al.’s (1991) case the fine-

grained information is information about the location of dots within the boundaries of a circle; in 

the case of real-world location estimates, fine-grained information can be the location of cities or 
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other locations at either a global (Friedman & Brown, 2000a, 2000b; Friedman, 2009) or 

navigable (Kitchin & Fotheringham, 1997) scale.  

The second source of spatial information is category-level knowledge. This information 

can also be metric in nature and tends to comprise beliefs about the locations of category 

boundaries and prototypes. For example, when remembering the locations of dots in a circle, 

people tend to act as if the circle were divided into quadrants, with the boundaries of the 

quadrant/categories being (non-existent) vertical and horizontal lines.   Some researchers have 

suggested that these lines are a cognitive construction (e.g., Huttenlocher et al., 1991), whereas 

others (e.g., Simmering & Spencer, 2007; Weinderoth & van der Zwan, 1991) have suggested 

that the lines may be caused by features of the visual system and hence are experienced as if they 

had actually been seen.  In either case, these category boundaries are metrically precise; more so, 

in the usual case, than the fine-grained location information. When fine-grained knowledge is 

relatively vague, people rely more heavily on categorical knowledge to make their estimates. The 

precision of the category boundaries combined with the (usual) vagueness of the memory for a 

given dot’s location leads people to estimate locations that are close to the category’s prototype – 

in this case, the diagonals of the circle. Thus, the combination of item- and category-level 

knowledge leads to biased responses (i.e., responses toward the prototypes). Nevertheless, in 

estimating the locations of dots in circles, responses are more accurate on average when the 

prototype is used than they would be if category knowledge did not play a role in the estimates 

and participants relied on only (vaguer) fine-grained location knowledge. However, in real-world 

location estimates, the category boundaries may also be precise (e.g., political borders), but from 

a metric standpoint they can be incorrectly located by large amounts (e.g., people may believe 

that a given region is too far north or south of its actual location; Friedman & Brown, 2000a; 
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Friedman & Montello, 2006).  

The present research was designed to address two questions that follow from using the 

category-adjustment model to make predictions about the representation and use of fine-grained 

and category-level information in location estimates.  The first concerns whether, and to what 

extent, models of the representation of item- and category-level information hold in larger, 

navigable spaces.  The second concerns the time-course during which both levels of information 

are learned; for example, do both fine-grained and categorical knowledge develop 

simultaneously, or is one learned before the other?   

With respect to the first question, most research in this field has been done in either 

relatively small-scale spaces, such as a computer screen (e.g., Huttenlocher, Hedges, Corrigan, & 

Crawford, 2004; Newcombe & Chiang, 2007), a sandbox (Huttenlocher, Newcombe, & 

Sandberg, 1994), a scale model (e.g., DeLoache, 1989, 2000; Hund & Plumert, 2005, 2002, 

2003), or a small room (e.g., Hermer & Spelke, 1996, 1994; McNamara, Rump, & Werner, 2003; 

Mou, McNamara, Valiquette, & Rump, 2004). Other research has been conducted with respect to 

large-scale global spaces that are not typically navigable (e.g., the countries in North America; 

Friedman & Brown, 2000a, 2000b; Friedman et al., 2005; Friedman & Montello, 2006).  

Relatively few studies about the representation and use of fine-grained and category knowledge 

have been done in spaces that are navigable and thus can be learned through many different 

means (e.g., walking; public transport; automobile; maps; directions from others). Indeed, a 

general criticism of much psychological research that tests the category adjustment model, and 

perhaps research in spatial cognition more generally, is that it has focused on scales that are so 

small that they render the findings potentially ungeneralizable, even to slightly larger spaces 

(Liben, 2003; Montello, 1993).  Even modest changes in the size of a space can alter 
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dramatically the way that spatial information is represented mentally (e.g., Acredolo, 1981; 

Learmonth, Newcombe, Sheridan, & Jones, 2008).  

As noted above, for small-scale spaces (e.g., the size of a computer screen; Huttenlocher 

et al., 1991) the combination of both category- and fine-grained information leads to optimal 

judgments. For larger, geographic-scale spaces, category knowledge has been shown to be 

detrimental to overall accuracy primarily because people’s beliefs about the locations of category 

boundaries are ―off‖ by a comparatively large amount. For example, Friedman et al. (2005) 

showed that Canadian, American, and Mexican participants all placed most Mexican cities at or 

near the equator; presumably this global landmark serves the same function for all participants 

and causes their estimates to be approximately 1500 miles too far to the south (see also 

Friedman, 2009). Nevertheless, all three groups of participants were relatively accurate in 

placing the cities within their home regions in their correct north-to-south relations, and the 

relations were metrically (and strongly) linear. This finding is an example of how the fine-

grained knowledge can be accurate within regions, but when this fine-grained knowledge is 

combined with category knowledge the overall result is highly inaccurate (Friedman, 2009; 

Friedman & Montello, 2006).  Here we test whether category-level knowledge at the navigable 

scale can also lead to inaccurate performance. If so, this finding would be a further constraint on 

the category adjustment model. 

Our second goal was to examine how fine-grained and category-level information is 

acquired over the course of one or more years in a large-scale, navigable space:  the campus of 

Northwestern University in Evanston, Illinois, USA. We measured location estimates of 

buildings on the Northwestern campus from first year students during the first three quarters of 

the academic year, and from second-through-fourth year students during the same time period, 
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using a cross-sectional design for both groups. This design allowed us to examine the acquisition 

of both fine-grained and category knowledge and determine, for example, whether their learning 

overlaps. 

The layout of the Northwestern campus is a particularly interesting test bed for studying 

how fine-grained and category-level information are represented and used in navigable spaces.  

Originally, the northern and southern sections of campus were clearly defined areas and were 

separated by substantial empty space.  However, the campus has filled in, and there is no longer 

a clear geographic boundary separating the northern and southern sections of campus. A third, 

mid-campus area also has emerged.  For decades, it has not been possible to look at a map of the 

campus and be sure which buildings are on which section of campus (see Figure 1).  

Nevertheless, students often refer to buildings as being ―up north‖ or ―down south‖.  In addition, 

the three campus areas now house different groups of buildings by academic discipline; for 

example, science and technology are on north campus, and music and fine arts are on south 

campus.  Therefore, there are probably both linguistic and cultural bases for a cognitive division 

of the campus.  Indeed, although north and south campus do correspond to general geographic 

areas, they are now as much a cognitive construction as a geographic reality. At the same time, 

the campus is also small enough and course requirements are broad enough that it is reasonable 

to assume that students will have navigated the entire campus during their tenure at the 

university and that they can be expected to acquire at least some information about locations on 

both north and south campus.  We focus on north and south campus because linguistic references 

to these areas are much more common than are references to mid-campus.   

We made two sets of predictions regarding the representation and learning of campus 

locations.  The first set of predictions concerns the learning of fine-grained information and the 
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second concerns the learning of category-level information. We predicted that fine-grained 

locational knowledge would improve, certainly for first-year students and possibly across the 

course of four years on campus.  Consequently, people should exhibit improved knowledge for 

the configuration among all the buildings on campus (i.e., building-to-building relational and 

metric knowledge among items). The second set of predictions concerned the acquisition of 

category-level knowledge, which we hypothesized should also develop with time on campus. We 

discuss each of these in turn below. Notably, a key aspect of our design is that it allowed us to 

determine whether fine-grained and category-level information are learned at the same rate. To 

our knowledge, this is the first time that this type of separation in rate of spatial learning as a 

function of type of information over a long period of time has been examined. 

We examined the accuracy of fine-grained knowledge in three ways. First, we analyzed 

the X and Y dimensions independently. Whereas the match between the estimates and 

configuration of the campus as a whole is important because of theoretical interest in how object-

to-object locations are learned during navigation (e.g., Mou, McNamara, Valliquette, & Rump, 

2004; Waller, Montello, Richardson, & Hegarty, 2002), from the perspective of the category-

adjustment model we had specific predictions about the north-south dimension. In particular, 

because of the cognitive ―construction‖ of the north and south campus, we hypothesized that 

knowledge about buildings on the Y (north-south) dimension would underlie any observed 

effects of category knowledge. Moreover, if the cognitive and linguistic conventions used to 

refer to the buildings or landmarks on campus play a role in their represented locations, then the 

north-south locations of the buildings and landmarks should be learned earlier than the east-west 

locations.  If so, then the Pearson correlations between actual and estimated locations on the Y 

dimension should be stronger than the correlations on the X dimension earlier in a participant’s 
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experience on campus.  We used Pearson correlations because we wanted to examine the metric 

accuracy of the acquired knowledge. 

The second way we examined the accuracy of fine-grained knowledge was to analyze the 

data with a bidimensional regression (BDR). This type of analysis quantifies the accuracy of 

knowledge about the overall configuration of buildings (Friedman & Kohler, 2003; Tobler, 1965, 

1994). Briefly, BDR is a statistical method that computes a correlation between two or more 

two-dimensional Euclidean configurations of locations and provides parameters that describe the 

extent to which an individual’s cognitive map must be rotated, translated north-south and/or east-

west, and scaled to fit into an actual map and vice versa. In other words, it is a two-dimensional 

―best fit‖ among a set of points. Thus, just as a Pearson r reflects the magnitude of the linear 

relation between two unidimensional variables, the magnitude of the BDR coefficients for each 

participant reflects how much variance in the configuration of the estimated values of a 

bidimensional variable is accounted for by the actual configuration of locations in Euclidean 

space (or vice versa; see Friedman & Kohler, 2003, for details). The BDR coefficients thus 

inform us about the growth of fine-grained (parametric) configurational knowledge about the 

campus as a whole and thus address the issue of how object-to-object relations are learned 

through navigation. We had no a priori predictions about the remaining parameters of the BDR 

analysis, and some of them (e.g., the north-south and east-west translation parameters) could 

plausibly be part of both fine-grained and category-level knowledge, so the analyses of these 

parameters (and further explanation) are given in the Appendix.  

The third measure of fine-grained knowledge was the raw accuracy of participants’ 

placements, computed as the absolute error in pixels for each estimate for each building, 

separately for the north-south and east-west dimensions (i.e., |estimated value – actual value|). 
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We used absolute errors on each dimension instead of signed error because signed error can give 

a false impression of accuracy if subjects are uncertain about relative positions on a dimension, 

as positive errors will cancel negative errors.  Absolute errors, in contrast, are a measure of this 

uncertainty. In general, absolute errors reveal different information than correlations. For 

example, in Friedman (2009), within-region correlations between actual and estimated locations 

in familiar regions were relatively good but absolute errors for the same locations were quite 

large. This result indicated that the within-region fine-grained location information was 

metrically accurate but the items were inheriting inaccurate absolute location information from 

the regional level. In the present case, it should be noted that because the campus is rectangular, 

with the north-south dimension being approximately 1.4 times as large as the east-west 

dimension, there is less absolute ―room‖ for east-west errors than for north-south errors. 

Consequently, it is possible that absolute errors on the east-west dimension could be less than 

those for the north-south dimension because there is actually less physical room to respond in the 

former direction than in the latter. However, if categorical information facilitates the acquisition 

of correct relative north-south locations between buildings, absolute errors to east-west locations 

might actually be greater than north-south errors. 

The second set of predictions we made concerned the learning of categorical knowledge 

about the campus. Even as building-to-building knowledge on the north-south dimension and 

configurational knowledge may improve with time, it is still possible that the buildings in the 

north of campus are drawn apart from the buildings in the south, leading to the representational 

underpinnings of any observed category-level effects. This should happen if categorical beliefs 

about the north and south campus develop with time and are influential in the representation of 

campus locations.  Alternatively, a psychological ―border‖ between north and south campus 
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might develop with time. In either case, the implication is that distances computed from location 

estimates of buildings within the north or within the south campus should be less than physically 

equal distances computed from location estimates of buildings across the invisible north-south 

boundary.  This type of ―border effect‖ has been demonstrated repeatedly. For example, 

Newcomb and Liben (1982) found that children consistently overestimated distances that 

traversed boundaries relative to comparable distances that did not traverse boundaries.  Maki 

(1981) found similar results for judgments of distances that either did or did not traverse state 

borders.   Borders can influence judgments of geographic distance, even when the physical 

borders no longer exist and are therefore necessarily psychological (e.g., the former Berlin Wall, 

see Carbon & Leder, 2005).  

We examined the influence of categorical knowledge by computing the Euclidean 

distance between pairs of buildings in which both members of a pair were located in either the 

northern or southern regions of campus (within-region pairs), or one was located in the north and 

the other in the south (between-region pairs). The pairs were selected so that the average within-

category Euclidean distances were equated to the between category distances, to within one 

pixel. The average within- and between-region computed distances were then analyzed to 

determine whether there were border effects and when they arose. If category knowledge 

increases with time, the between category estimates should eventually become larger than 

within-category estimates (e.g., Friedman & Montello, 2006; Maki, 1981).  

In summary, then, we have a set of somewhat counterintuitive predictions: At the same 

time that configural knowledge is improving, the computed Euclidean distance between 

estimated locations should show an increasing tendency for the categories to separate.  

Demonstrating that both fine-grained accuracy and category-level bias increase with time but at 
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different rates would provide strong evidence for the independence of these two types of 

knowledge. This pattern of results would provide evidence for the category-adjustment model, 

but would constrain that model by showing that at a navigable scale (as at a global scale), the 

categorical information causes inaccuracies in the representation, rather than making it more 

accurate.  

The design of our study also allowed us to address an additional issue that could affect 

participants’ estimation of locations: the influences of physical boundaries on participants’ 

spatial judgments.   One group of participants made their responses on a ―blank slate‖—a 

computer screen that was empty except for the location of a central campus building.  A second 

group had precise east and west boundaries (the Chicago Transit Authority ―el‖ train tracks on 

the west and the border of Lake Michigan on the east). Kitchin and Fotheringham (1997), who 

also investigated location estimates in a navigable space, found that including precise boundaries 

improved estimation accuracy by a great deal. In the present study, we naturally expected that 

the groups who had cues would be more accurate than those that did not (see Simmering & 

Spencer, 2007). Nevertheless, the linguistic and physical categories are references that highlight 

the north-south dimension. Thus, the addition of east-west border information should not affect 

any influence of categorical information in the north-south dimension and biases in that 

dimension should still be evident.  

Method 

Participants  

 All 162 participants were full-time, undergraduate students on the Evanston Campus of 

Northwestern University.   The majority of the participants was enrolled in Introductory 

Psychology and received credit for the research participation requirement of that course.   
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Because most of the students in this introductory class were first and second year students, 

additional third and fourth year subjects were recruited during the summer and were 

compensated $5 for their time.  

All participants completed a brief, preliminary survey in which they indicated where they 

lived on campus currently and during the past year because we wanted to roughly balance for 

residency on north and south campus. Indeed, because only 8 participants were recruited who 

lived on mid-campus, their data were excluded from further consideration.  In addition, a total of 

12 participants began the experiment but either did not complete it or their data were not 

included in the final analyses for a variety of reasons (5 were excluded because of computer 

error, 5 because they did not indicate where they lived on campus or lived off campus, 1 because 

her data on some measures were more than 3 standard deviations from the mean of the other 

participants’, and 1 because he was the only participant among the first-year students who was in 

the fourth quarter, that is, attending summer school).   Thus, in the final data set, there were 142 

participants: 93 first year students, (36 males, 57 females; mean age 18.4; range 17-20 years; 

three participants did not give their ages; 36 students were in their first quarter, 30 were in their 

second, and 27 were in their third); 24 second year students (12 males, 12 females; mean age 

19.3; range 18-20 years); 13 third year students (8 males, 5 females; mean age 20.6; range 20-21 

years); and 12 fourth year students (7 males, 5 females; mean age 21.6; range 21-22 years).  In 

total, then, there were 49 upper-level students (19 males, 22 females; mean age 20.2, range 18-22 

years). 

Stimuli and Procedures 

Selection of Landmarks. Figure 1 shows a map of campus that is freely available on-line 

(http://www.northwestern.edu/campus-life/evanston-campus/) and is included in recruitment and 

http://www.northwestern.edu/campus-life/evanston-campus/
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orientation materials for students. It can be seen that there are no natural or manmade borders 

that would formally demarcate the campus into different regions. Figure 2 shows the stimulus 

map that was seen by participants in the Cue Group. 

To assign buildings to regions, we divided the campus into three sections: South, Mid, 

and North campus based on the following criteria.  South campus was defined as beginning at 

CVS Pharmacy and ending at the south end of an imaginary line extending Emerson Street to 

Lake Michigan; Mid campus was from the north end of this imaginary line to an imaginary line 

extending Campus Drive through Lake Michigan, and North campus was from an imaginary 

extension of Campus Drive to the north end of Lincoln Street.    

The psychological divisions were confirmed with a questionnaire filled out by 12 

additional subjects who were familiar with the campus.  Participants were provided with a list of 

the campus buildings and were asked to indicate whether each of the buildings was in South, 

Mid, or North campus.  Overall agreement with our assignment of the buildings was 93.4%.  

Agreement was 100% for 15 of the 28 buildings.  Agreement for the North and South campus 

buildings was and 96.5% and 98.5%, respectively. Agreement was low for only one building: 

Swift Hall, with 4 participants indicating that it was in Mid campus, 6 indicating that it was in 

North campus, and 2 indicating it was on South campus.  Part of the confusion may stem from 

the fact that there are actually two buildings on campus with the name Swift: One is simply 

called Swift Hall and the other is called Annie Mae Swift Hall.   Note that Swift Hall was not 

used as one of the target stimuli; it was the one building whose location was indicated on the 

response screens for both the Cue and No-cue groups.  In any case, these results confirmed our 

division of the campus into three regions and show that there is good agreement among students 

regarding which buildings are in which region. 
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Within each region, the target locations included the main entrances of major campus 

buildings and other physical landmarks judged by pilot testing to be the most salient among the 

student body (see Figure 1). We selected these stimuli so that they were well distributed 

throughout all three campus regions, for a total of 11 north campus locations, 6 mid campus 

locations and 11 south campus locations. There were an unequal number of buildings per region 

because there are fewer buildings in mid-campus, due to several preserved green spaces. 

Procedure 

We tested all subjects in Swift Hall, which is located very close to the geographic center 

of campus. After providing informed consent, participants were asked to rate their knowledge of 

each of 28 campus locations on a scale of 0-9.  We provided examples for most of the points on 

the scale; for example, 1 or 2 was defined as a place that the participant had heard of but never 

visited, and an 8 or 9 was defined as a location about which the participant knew quite a bit 

about. The knowledge ratings were given primarily as a means of familiarizing participants with 

the set of places they would be estimating in the next phase of the task (see Friedman & Brown, 

2000a). The target locations were presented in a random order for each participant. 

Location Recall.  Next, we assessed subjects’ recall of the target locations.  All 

participants recalled the locations one at a time by ―dragging and dropping‖ an X that stood for a 

particular target place to the location on a computer screen where they thought that particular 

target should be located.   

On each trial, the name of the target location appeared at the top of the screen, and an X 

appeared at the bottom of the screen.  Participants were told to use the mouse to drag the X to 

show where the building whose name appeared at the top of the screen was located on campus. 

They were instructed to move the X until the middle of the X was exactly where they thought the 
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building (or other landmark) would be located on a map of the campus.  Participants were 

instructed to press a mouse button to drop the X in the correct location. Once participants were 

satisfied with their response, they pressed the Enter key. E-prime software (Psychology Software 

Tools, Inc.) presented the stimuli and recorded the estimated locations in pixel units.  

The procedure was repeated for each location individually; participants placed one 

location at a time, and the only building that appeared on all screens for all participants was 

Swift Hall, the location in which they were being tested.  Locations were presented in a different 

random order for each participant. 

Participants were assigned randomly to either the cues or no cues condition. The cues 

condition response screen included lines representing the elevated train tracks (the west 

boundary of the campus) on the left side of the screen and a line representing Lake Michigan (the 

east boundary of campus) on the right side of the screen in addition to the X demarking Swift 

Hall (see Figure 2). Participants in the no cues condition responded on a screen that depicted 

only the X representing Swift Hall.  

Data analysis  

 The location estimate for each target stimulus was derived from the cursor position that 

each participant clicked on for each building; that position provided the estimated X,Y pixel 

values.  We used these location estimates to examine the acquisition of, and changes in, both 

fine-grained and category-level knowledge. 

We analyzed the data from the first-year students alone to see whether both fine-grained 

configural and category knowledge increased over the course of their three quarters on campus. 

We then analyzed the data from the upper-level students to see whether configural and 

categorical knowledge continued to increase. The data from both groups were then combined to 
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examine the influence of overall time on campus on both fine-grained configural knowledge as 

well as category effects. For all analyses reported, we adopted a p < .05 alpha level and report 

2

p  as the measure of effect size. 

Because parametric correlations are not normally distributed (as r increases the sampling 

distributions become skewed), we transformed all correlations (Pearson and bidimensional) 

using Fisher’s r to z method before they were submitted to statistical tests. The reported 

correlations were computed by back-transforming the mean of each r to z transformed 

correlation. 

Results 

Knowledge ratings.  In a Cue Group by Quarter analysis of variance (ANOVA), first-year 

students reported increasing knowledge of the locations as a function of quarter; the means for 

the first, second, and third quarters were 5.23, 5.43, and 5.88, respectively, but the effect only 

approached significance, F(2, 87) = 2.56, MSE = 1.35, 2

p   = .056, p = .085. No other effects 

were significant. The Class (first-year vs. upper-level) by Cue Group (cues vs. no cues) ANOVA 

revealed only a main effect of Class, F(1, 138) = 12.21, MSE = 1.40, 2

p  = .081. The mean for 

the first year students was 5.49 and for the upper level students it was 6.23.  Thus, self-reported 

knowledge continued to increase with time on campus after the first year. 

Fine-grained accuracy. As noted above, we examined fine-grained accuracy with three 

measures: the linear relation between the 28 actual and estimated locations for the X and Y 

dimensions separately, using Pearson correlations; the Euclidean configural accuracy among all 

the locations measured using BDR coefficients; and absolute accuracy using absolute distances 

(in pixel units) between actual and estimated locations for each dimension separately.  

For the first-year students, we submitted the Fisher-transformed Pearson correlations to a 
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Cue Group (cues, no cues) x Quarter (1-3) x Dimension (X, Y) mixed ANOVA, in which 

Dimension was the repeated measure. There was a main effect of Cue Group, F(1, 87) = 4.93, 

MSE = 0.53, 2

p  =.054, a main effect of Quarter, F(1, 87) = 15.13, MSE = 0.54, 2

p   = .258, and 

a Cue Group by Quarter interaction, F(1, 87) = 3.54, MSE = 0.54, 2

p  = .075. Importantly, there 

was also a main effect of Dimension, F(1, 87) =70.54, MSE = 0.16, 2

p  =.448, and equally 

important, Dimension did not interact with any other factor for the first-year students. The data 

across all four factors are shown in Figure 3.  

The correlations were generally higher for the Cue group than for the No Cue group. In 

addition, within each cue group and for all three quarters, correlations on the Y dimension were 

always stronger than those on the X dimension. Correlations were stronger on the Y than on the 

X dimension for the very first quarter, F(1, 87) = 20.13, MSE = 0.22, 2

p  = .359, indicating that 

the north-south locations of buildings were very rapidly learned indeed. 

For second-through fourth-year students, only the main effect of Dimension was 

significant, F(1, 47) = 102.44, MSE = 0.11, 2

p   =.685 (the back-transformed means were .521 

and .791 for the X and Y dimensions, respectively; see Figure 1). Importantly, in the ANOVA 

that included Class, Cue Group, and Dimension as factors, all three main effects were significant 

(for Class, F(1, 138) = 10.39, MSE = 0.65, 2

p   = .070; for Cue Group, F(1, 138) = 5.98, MSE = 

0.65, 2

p   = .042; for Dimension, F(1, 138) = 155.34, MSE = 0.14, 2

p   =.530), as was the 

interaction between Class and Dimension, F(1, 138) = 3.89, MSE = 0.14, 2

p  =.027. No other 

interactions were significant (Fs < 1). Across quarters for the first-year students, the mean 

correlations for the X and Y dimensions were .707 and .882, respectively, and for the second-

fourth year students they were .806 and .947.  The data in Figure 3 suggest that by the end of the 
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first year, the north-south and east-west locations of the campus buildings were relatively well 

learned, and the relations were strongly linear, though performance was better for the group that 

had cues than for the group that did not. In addition, estimates on the north-south dimension 

remained high through the later years on campus, yet there was still a significant difference 

between the two dimensions. 

In sum, the correlational data show that both within the first year and across the four 

years, fine-grained metric accuracy about the north-south and east-west locations of the target 

buildings increased, but the north-south correlations began at a higher level than the east-west 

ones did. Notably, the correlations for the first-year students in their third quarter were quite 

similar to the correlations for the upper-level students. Consequently we believe that most of the 

learning of fine-grained locations occurred during the course of the first year on campus.   

To examine learning of configural knowledge among the buildings, a BDR coefficient 

was determined from each individual’s 28 estimates; the actual campus locations (in X,Y pixel 

units) were the independent variable and the estimated locations (also in pixels) were the 

dependent variable.  For first-year students, we analyzed the resulting Fisher-transformed 

regression coefficients in the same way as the correlations (but without Dimension as a factor 

because the BDR analysis is already two-dimensional). First-year students’ accuracy was 

affected by the presence of cues, F(1, 87) = 10.83, MSE = 0.16, 2

p  = .111. Fine-grained 

configural knowledge was higher for participants who had perceptual cues versus those who did 

not; the back-transformed mean regression coefficients were .883 and .805, respectively. There 

was also a main effect of quarter, F(2, 87) = 13.73, MSE = 0.16, 2

p  =.240. The back-

transformed means for the first, second, and third quarters were .754, .852, and .906, 

respectively.  
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For upper-level students, the effect of Cue was also significant, F(1, 47) = 6.91, MSE = 

0.20, 2

p  = .128. The back-transformed means were .941 for the Cue Group and .885 for the No 

Cue Group. In the combined analysis of all students, there were significant main effects of Cue, 

F(1, 138) = 16.13, MSE = 0.20, 2

p  = .105, and importantly, Class, F(1, 138) = 19.47, MSE = 

0.20, 2

p  = .124. The effect of Class indicated that on average, configural knowledge of the 

campus continued to improve after the first year; the back-transformed means for the first-year 

and upper-level students were .839 and .917, respectively. However, the BDR coefficient for the 

first year students in their third quarter were similar to that of the upper-level students (.906 and 

.917, respectively). Thus, it appears as if fine-grained configural knowledge was acquired 

primarily through the first year. 

The third way we examined fine-grained accuracy was by analyzing the absolute errors in 

pixel units of distance, independently for the X and Y dimensions.  The first-year students had 

significant main effects of Cue Group, F(1, 87) = 32.69, MSE = 21244.91, 2

p   = .273, and 

Quarter, F(2, 87) =10.16, MSE = 21244.91,
 

2

p  = .189, and an interaction between the two 

variables, F(2, 87) = 3.56, MSE = 21244.91, 2

p   = .076. There was also a nearly significant 

effect of Dimension, F(1, 87) = 3.53, MSE = 11610.24, 2

p  = .039,  and a Dimension by Cue 

Group interaction, F(1, 87) = 15.02, MSE = 11610.24, 2

p   = .147. No other effects were 

significant. The data are shown in Figure 4. It is clear that the Cue group was more accurate than 

the No Cue group on both dimensions, and that there was a significant decline in absolute error 

across quarters. The Cue by Dimension interaction indicated that for the No Cue group, the 

north-south dimension was more accurate than the east-west dimension, whereas for the Cue 

Group the opposite was true.   This interaction probably stems from the fact that the lines 
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constrain the placements for the Cue Group, and there was less room for error in the east-west 

dimension when there were cues. In addition, there was not much difference between the 

dimensions in general for the Cue Group. But it is important to note that accuracy was higher in 

the north-south dimension when there were no cue constraints.  This result indicates (again) that 

participants were more familiar with the locations of the buildings on this dimension than they 

were on the east-west dimension. 

For the upper-level students, there was also a main effect of Cue Group, F(1, 47) = 5.25, 

MSE = 28092.17 2

p   = .100, and a Dimension x Cue Group interaction, F(1, 47) = 9.14, MSE =  

8148.17, 2

p  = .163, which took the same form as that for the first-year students (see Figure 4). 

In the analysis that included both the first-year and upper-level students, importantly, the 

main effect of Class was significant; upper-level students were more accurate on average than 

first year students, F(1, 138) = 7.17, MSE = 26947.80, 2

p =.049. In addition, there was once 

again a main effect of Cue Group, F(1, 138) = 25.96, MSE = 26947.80,
 

2

p = .158, and a 

Dimension x Cue Group interaction, F(138) = 19.18, MSE = 10518.76, 2

p = .122, but no other 

significant effects. 

In sum, all three measures of fine-grained knowledge converge on roughly the same 

conclusions: First, cues clearly contributed to accurate performance.  Second, because the cues 

constrained the east-west estimates but not the north - south estimates, the former were more 

accurate than the latter at an absolute level but not in terms of relational knowledge (either on the 

separate dimensions or the configuration as a whole); third, fine-grained knowledge was gained 

with time on each dimension alone and on the configuration of buildings as a whole; and finally, 

the Pearson correlations showed that the parametric relation between north-south locations was 
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stronger than it was for east-west locations, and at an earlier stage in the participants’ time on 

campus. 

 Categorical Accuracy. We measured the influence of categorical information on the 

estimates using the computed Euclidean estimated distances between 12 preselected pairs of 

buildings that were either both in North campus (N = 3 pairs), both in South campus (N = 3 

pairs), or were between categories (N = 6 pairs). The actual distances between the pairs in the 

North, South, or between categories were 678, 679, and 677 pixels, respectively. For 

comparison, each pixel was equivalent in distance to approximately 1.092 meters on the campus, 

so a distance of 678 pixels would equal approximately 750 meters.  

For the first year students, in an ANOVA in which Cue and Quarter were between-

subjects and Category Type (within vs. between category pairs) was within subjects, there was a 

main effect of Cue Group, F(1, 87) = 25.91, MSE = 105,190.46, 2

p = .229.  In general, the 

computed distances for the No Cue group were larger (960 pixels) than those for the Cue group 

(714 pixels). There were also interactions between Cue Group and Quarter, F(2, 87) = 4.63, MSE 

= 105,190.46, 2

p = .096, and Cue Group and Category Type, F(1, 87) = 5.06, MSE = 54,899.86, 

2

p  = .055. The Cue by Quarter interaction showed again that the perceptual cues constrained the 

overall distances, but when there were no cues, the computed within- and between-category 

distances generally increased with time. The distances for the first, second, and third quarters for 

the Cue group were 727, 652, and 763 pixels, respectively, whereas those for the No Cue group 

were 807, 1082, and 993 pixels. For the Cue Group by Category Type interaction there was not a 

consistent pattern (the means for the within vs. the between category pairs for the Cue group 

were 690 and 748 pixels, respectively, and for the No Cue group they were 1015 and 906 pixels). 

There is therefore a hint that the cues resulted in a category effect, but the absence of cues 
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resulted in an opposite pattern. Thus, it appears that first-year students were primarily acquiring 

fine-grained configural knowledge.  For upper-level students, there was again a main effect of 

Cue Group, F(1, 47) = 9.12, MSE = 71052.94, 2

p = .163. The No Cue group estimated larger 

distances between buildings than the Cue group (890 vs. 725 pixels, respectively). Importantly, 

there was an effect of Category Type that approached significance, F(1, 47) = 4.03, MSE 

=34297.94, 2

p =.079, p = .051. As expected, the between-category computed distances were 

larger than the within-category estimates (839 vs. 745 pixels, respectively). In addition, there 

was a Cue by Category Type interaction, F(1, 47) = 5.95, MSE = 34297.94, 2

p = .112. 

Interestingly, there was a relatively large category effect when upper-level students had 

perceptual cues (640 vs. 809 pixels for within vs. between-category distances, respectively). 

However, when there were no cues the computed distances were roughly equivalent (898 vs. 882 

pixels for within vs. between category distances). Apparently, the cues allowed the senior 

students to better express their categorical knowledge (and thus, be less accurate in the distances 

computed for their estimates). Recall that the actual distances averaged 678 pixels for both 

within and between category pairs. Thus, the cues allowed the upper-level students to be accurate 

within categories but at the same time to spread the buildings out from the center, thus causing 

the between category estimates to increase. 

In the ANOVA that combined classes, there was a main effect of Cue Group, F(1, 138) = 

24.67, MSE = 101639.94, 2

p = .152 and a Cue by Category Type interaction, F(1, 138) = 8.14, 

MSE =  48544.81, 2

p = .056. Importantly, the Class by Category Type interaction was 

significant, F(1, 138) = 3.91, MSE = 48544.81, 2

p  = .028. The interaction among Class, 

Category Type, and Cue Group is shown in Figure 5. For first year students there were no 
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differences between within- and between-category distances (853 vs. 820 pixels, respectively), 

but for the second- through fourth-year students, there was a significant difference (769 vs. 845 

pixels). Thus, overall, configural knowledge was expressed before category knowledge: The 

north-south and BDR regression coefficients for the first year students increased throughout the 

three quarters of their first year, but they did not exhibit strong category effects.  In contrast, the 

upper level students showed an effect of category-level information in the computed within- vs. 

between-category locations, especially when there were perceptual cues. 

Discussion 

Taken together, the results of this study shed important light on the acquisition of new 

spatial representations in natural environments.   As predicted, both categorical and fine-grained 

knowledge increased over time; as students learned more about the specific locations of the 

campus buildings, they also learned more about which campus region the locations were in 

(South, Mid, or North campus).  Both forms of knowledge affected participants' placements of 

the locations.  For example, even though upper-classmen knew a great deal about the specific 

configuration of locations of buildings on campus, their judgments were simultaneously more 

biased than first-year students’ because they had acquired knowledge of the categories on 

campus.  Put another way, participants’ placements of the buildings in our experiment (and, 

presumably, their mental representations of the locations on campus) grew more accurate in 

terms of fine-grained knowledge within regions and thus for the configuration as a whole, but the 

placements also became more biased because of the influence of increasing knowledge about the 

categories. 

The increase in categorical knowledge stems, at least in part, from increasing familiarity 

with the divisions of the campus as well as from communication among students.  The campus 
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divisions are not, to our knowledge, explicitly marked on any campus maps, but they are referred 

to frequently in conversations.   Thus, they are a cognitive and linguistic construction, and 

students therefore are not likely to learn about the campus divisions simply by navigating on 

campus.  Of course, knowledge gained from navigating around campus would augment 

knowledge gained from conversations, but it seems unlikely that the categorical knowledge 

would emerge as it did in the present experiment if students did not hear and learn about the 

buildings’ locational referents, and thus the campus divisions, from others.  Thus the learning 

and construction of categorical representations of space is both a social and a cognitive process. 

The increase in fine-grained knowledge probably stems from an increase in familiarity 

with either the individual building locations, the relations among locations, or both.  In other 

words, there are two (non-mutually exclusive) possible explanations for what participants 

actually learned (and represented) as they learned more about the fine-grained locations of the 

campus buildings.  The first possibility is that students simply acquired more precise knowledge 

of the specific location of each of the buildings. Thus, through navigating, looking at maps, and 

other sources of information, the students increasingly knew more precisely the location of each 

of the buildings. Relational knowledge would emerge as a byproduct of this absolute knowledge.   

The second possibility is that the participants also learned explicitly about the relations 

among the locations, that is, that they began to code the configuration of locations (e.g., Gentner, 

1983; Gentner & Markman, 1994, 1997; Mou, Zhao, & McNamara, 2007).  Put another way, the 

subjects began to learn where each location was relative to the other locations.  Thus, in contrast 

to many prior studies in which participants have learned a single location at a time (e.g., 

Huttenlocher, Hedges, & Duncan, 1991; Spencer & Hund, 2002; Spencer, Simmering, & 

Schutte, 2006), subjects in the present experiment learned multiple locations over an extended 
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period of time and hence had the possibility of learning about relations among these locations. In 

addition, the relations among locations could be learned through several means, including maps, 

navigation, being given directions, taking detours or learning shortcuts, and so on. 

Our data do not allow us to distinguish between these two possibilities.  Either form of 

representation could have accounted for the observed results obtained for fine-grained 

knowledge.  However, it is worth noting that knowledge of relations among locations would 

have the benefit of constraining the location of other buildings, thus making it easier to recall a 

specific location.  Thus, even though coding knowledge of relations among locations might be 

seen as demanding, there is an ultimate payoff in accuracy. 

Learning sequence.  The results also shed light on the time course of learning categorical 

and fine-grained knowledge.  Specifically, the results indicate that fine-grained knowledge is 

learned before categorical knowledge, at least in this case.   We found that the influences of 

categorical knowledge did not emerge (at least statistically) during the first year, whereas fine-

grained knowledge did improve across the first three quarters. 

This result raises an important question: Is the learning sequence that we have identified 

(fine-grained before category) generalizable or is limited to the particular characteristics of the 

present study?  In our case, the categories are not well defined and thus must be learned and 

cognitively constructed over time.  As students progress through their majors, they will tend to 

spend increasingly greater amounts of time on one part of campus (usually at the expense of 

spending time on the other part of campus) because of the disciplinary relation among the 

buildings on each part of campus.  Both knowledge of the categorical distinctions, and the 

relevance of these distinctions for where students live and take classes, should therefore increase 

with time.  We acknowledge, however, that in other situations, it is possible that the learning 
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sequence might be different.  For example, when learning about geographic scale locations (e.g., 

countries), it is possible that people might learn about categorical divisions (e.g., states or 

countries) before they learn about specific locations.  What is less known, however, is when 

categorical knowledge about real-world geographical entities at several scales (e.g., navigational; 

global) begins to bias absolute location estimates (but see Kerkman, Friedman, Brown, Stea, & 

Carmichael, 2003). It is also worth noting that Newcombe and Chiang (2007), who trained 

people extensively on hypothetical geographic spaces (made-up countries within continents) in 

order to control for learning history found that biases in participants’ judgments differed from 

those found in real-world geography. They concluded that the biases in the hypothetical spaces 

were likely to have been based on perceptual heuristics rather than categorical organization. The 

important point for the present study is that real-world geography – whether at the geographic or 

navigable scale – is most typically learned over a much longer period of time than that used by 

Newcombe and Chiang (2007). In the present case, it seems to have taken at least a year on 

campus for the effects of categorization to be revealed in accuracy.   

 The influence of cues on participants’ placements.  As expected, we found that the 

presence of cues (i.e, boundary lines on the map) affected the accuracy of participants’ 

placements.  On average, participants’ placements were more accurate when there were map 

cues in the response space.  This result is consistent with the work of Kitchen (e.g., Kitchin & 

Fotheringham, 1997) and others (e.g., Friedman, 2009) who have found that the presence of 

lines, borders, or other boundaries can influence participants’ spatial judgments.   

An unexpected finding was that the influence of time on campus (i.e., year in school) on 

the biases created by category knowledge only became evident when participants responded on 

the screens with perceptual cues, the lines that indicated the campus borders.  When more 
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experienced participants used the response screen with the eastern and western borders, they 

tended to show more north-south category bias than participants of similar levels of experience 

who did not see the lines on the map. 

In interpreting this result, it is important to reiterate that the effect does not represent 

participants distorting distances across represented boundaries.  The lines that we included were 

the east and west boundaries of the campus, but participants nevertheless showed more bias in 

the north-south direction when the lines were present than when they were absent.  Thus it 

cannot be the case the participants were simply using the lines as boundary markers for the 

north-, mid-, and south-category boundaries.  Instead, the presence of the east and west boundary 

lines must have cued category knowledge, resulting in participants placing north- and south-

campus locations farther apart than they did when the lines were not present. It is possible that 

the cues strongly activated the students’ knowledge of the campus, which, for them, included the 

division of campus into regions. That is, making students think about their campus, by seeing the 

lines that explicitly defined its boundaries, may have activated knowledge of the categorical 

division of the campus, even when these divisions were not explicitly shown.  

Implications.  Our results have important implications for at least two lines of research in 

spatial cognition.  Specifically, the results advance our understanding of the representation and 

integration of category- and fine-grained knowledge, as well as the influences of size or scale on 

spatial judgments. 

The first point concerns the relative contributions of categorical and fine-grained 

knowledge to judgments within large-scale spaces.  Our results help to constrain the category-

adjustment model.  Huttenlocher, Hedges, and Duncan (1991) viewed the category-adjustment 

model as the optimal way to remember locations under conditions of uncertainty.  That is, in the 
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original model, even though the categories lead to systematic biases in location estimates, 

overall, it is assumed that locations at both the category and fine-grained knowledge is 

represented accurately and that bias occurs through their Bayesian combination; even the biased 

responses are statistically optimal under conditions of uncertainty.  If people are unsure of the 

precise location of a given object or landmark, then augmenting what they do know about the 

location with category knowledge tends to improve the accuracy of estimates on average at 

recall. 

We identified clear effects of both kinds of knowledge and documented that these 

increase at different times (Huttenlocher & Hedges, 1991; Hund & Plumert, 2002).  However, 

the present research, as well as prior studies (e.g., Friedman, 2009; Friedman & Montello, 2006; 

Friedman et al., 2005) suggests that the category adjustment model may not explain performance 

in large-scale space as well as it does in smaller spaces.  One important reason is that the current 

category adjustment model simply has no mechanism for learning over the long term, as would 

be required for estimates in both the current and previous (Friedman, 2009) studies. Indeed, 

Huttenlocher, Hedges, Corrigan, and Crawford (2004) showed that participants were insensitive 

to the distribution of locations in a dot location task; in part, we think that this is because 

configural knowledge is irrelevant to that task but it is not irrelevant for remembering real-world 

locations. Another possibility is simply that the category adjustment model does not apply to 

larger spaces.  However, we think it is more useful to use the current data to constrain the 

category adjustment model to account for the results we observed in large space – at both 

navigable and geographic scales. 

In our view, the influence of categories on estimates is not always to make them more 

accurate, although category and fine grained information may very well still be combined in a 
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Bayesian manner. The outcome is thus optimal in a Bayesian sense, but the result can be poor if 

one or more of the priors are inaccurate. This is especially true when beliefs about the location of 

a category’s borders (and thus, its prototype) are wrong by relatively large amounts, but the 

category is still weighted heavily in the judgment. Indeed, beliefs about the location of 

categories, or the relations among categories, can be systematically biased and hence lead to 

large and systematic errors. It may also be that people trust their categorical knowledge more 

than their fine-grained knowledge and weigh it more heavily for that reason. In the present case, 

perhaps the establishment of a linguistically and socially constructed category leads to an 

unusually high salience of categorical information, leading to its overweighting (see Hauser, 

2009).   

Thus, for example, in Friedman et al.’s (2005) work, participants’ distorted beliefs about 

the locations of North American regions in relation to large-scale geographical landmarks led to 

grossly exaggerated location estimates (and, by inference, distance estimates) between cities 

across regional borders in Canada, the United States, and Mexico by persons from all three 

countries. Further, Friedman and Montello (2006) showed that location and distance estimates 

(as well as ―border effects‖) at a global scale were computed from the same representation; here, 

we show how that representation changes with time. Likewise, in the present experiment, the 

effect of the invisible ―border‖ between North and South campus was evident for the upper-level 

students but not for the first-year students. The present data thus add to the literature on the 

differences between real-world location estimates and estimates within more abstract ―spaces‖. 

They particularly address differences between relatively short-term visual memory for dots 

presented one at a time and longer-lasting memories for spatial relations among entities 

experienced together over much longer time periods (see Friedman, 2009). Thus, the category 
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adjustment model is constrained in that it appears to apply primarily to spatial representations in 

relatively short-term memory; even extensive training on hypothetical maps (Newcombe & 

Chiang, 2007) did not produce the kinds of category effects seen with real-world geographic and 

navigable spaces. 

Scale and research in spatial cognition.  Finally, the results are relevant to an ongoing 

debate regarding the similarities and differences among spaces of vastly different sizes and the 

psychological processes that operate in them.  Several researchers have questioned whether 

research in small-scale spaces (e.g, computer screens, scale models) is relevant or can be 

generalized to the much larger spaces in which human spatial cognition and navigation typically 

occur (e.g., Liben, 2003; Montello, 1993). Our results suggest that research in small- and large-

scale spaces can reciprocally inform each other. The category-adjustment model, which was 

primarily evaluated in small-scale spaces, allowed us to make specific predictions regarding the 

the influence of fine-grained and categorical-knowledge on judgments.  At the same time, 

working in large, navigable spaces (or geographical-scale spaces) allowed us see the potential 

limitations of the categorical-adjustment model.  Specifically, whereas the category adjustment 

model views the combination of categorical and fine-grained knowledge as resulting in optimal 

judgments (under conditions of uncertainty), we found that in larger-scale spaces, biases in 

judgments about the locations of categories can lead to largely inaccurate absolute judgments. It 

is worthwhile noting again that our participants never made distance judgments per se; we 

computed the distances from their absolute location judgments. Thus, irrespective of whether 

they were encoding only the absolute locations or the relations between buildings, it is clear that 

once category-level information was available it was biased.   

In summary, we have shown that both fine-grained and categorical knowledge influence 
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judgments in large-scale, navigable space.  Although prior studies (e.g., Hirtle & Jonides, 1985) 

have demonstrated that categorical knowledge affects judgments in navigable spaces, to our 

knowledge, the present data are the first to show how both fine-grained and categorical 

knowledge influence judgments about navigable spaces and when these different forms of 

representation are learned. 
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 Table 1  
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Average BDR parameters for scale, rotation, and translation as a function of class and cue 

group.
1
    

 BDR parameters 

Class 

Scale Rotation 

(deg) 

Translation 

North-South 

(pixels) 

Translation 

East-West 

(pixels) 

First Year     

Cues .917 -3.28 198.85 10.13 

No Cues 1.047 18.83 116.19 7.15 

Upper Level     

Cues 1.022 -1.19 52.47 -84.59 

No Cues 1.030 19.86 136.15 -94.41 

 

1
The scale parameter is a multiplier (how much each estimated xy value would have to be 

multiplied by to best fit into the real map). For the rotation parameter, negative angles are 

clockwise rotations. For the translation parameters, because the 0,0 point is at the top left corner 

of the screen, larger values imply locations that are farther south and east. As an example, to best 

fit the average cognitive map of the first-year students who had the cues, one would take each 

estimated x and y value and multiply it by .917 (to decrease the scale by around 10%), rotate it 

clockwise by 3.28 degrees, add 200 pixels to the Y value (to move it south), and add 10.13 pixels 

to the x value (to move it east). 
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Table 2 

Changes in the scale of the cognitive maps for first year students as a function of cue group and 

quarter 

 Quarter 

Condition 1st 2
nd

 3
rd

 

Cues .905 .849 .986 

No Cues .814 1.198 1.182 
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Appendix 

Each participant’s reconstruction of the campus was fit to the actual location, as 

represented on the map shown in Figure 1.  The four BDR parameters derived from the estimates 

reflect how each individual’s cognitive map locations would have to be scaled, rotated, and 

translated north-south and east-west to best fit the actual campus map (see Friedman & Kohler, 

2003, for details). It is not necessarily clear how these parameters map onto either fine-grained or 

category knowledge; it is possible that these parameters would be part of both levels of 

representation. That is, because the same parameters apply to each location they can reflect (or 

be reflected in) fine-grained information about each location individually as well as information 

about biases or distortions in the configuration as a whole that might be either fine-grained or 

inherited from categorical knowledge  (e.g., does the configuration need to be scaled, rotated, or 

translated east-west or north-south). Consequently, we did not make a priori predictions about 

these parameters, other than to suppose that, if they reflected fine-grained knowledge they should 

improve as a function of time.  In addition, as with the BDR coefficient, the group with 

perceptual cues should be more accurate (for each parameter) than the group without cues. The 

means for each parameter are shown as a function of class and cue group in Table 1. We discuss 

each in turn. 

Scale. The scale parameter indicates how much the estimated locations (i.e., the cognitive 

map) have to be expanded or shrunk to best fit the actual configuration of tested campus 

buildings. For the first-year students, there were main effects of Cue, F(1, 87) = 6.41, MSE = 

0.08, 2

p = .069, and Quarter, F(2, 87) = 5.49, MSE = 0.08, 2

p = .112, and an interaction between 

the two variables, F(2, 87) = 5.11, MSE = 0.08, 2

p = .105 (see Table 2). Essentially, the presence 

of perceptual cues kept the first-year students on a relatively correct scale, whereas without cues 
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the expressed cognitive maps increased in scale with time.  Presumably, the buildings were 

moving ―farther apart‖ in participants’ cognitive representations, even as knowledge about the 

configuration among the buildings’ locations increased in accuracy. There is certainly some 

precedence in the spatial memory literature for increasing distance between locations as a 

function of familiarity (Holyoak & Mah, 1982). 

In contrast to the first-year students, there were no effects of scale as a function of cue 

group for the upper-level students. The average scale parameter for the cue group was 1.02 and 

for the no cue group it was 1.03. There were also no effects of scale as a function of either cue 

group or class in the combined analysis of both first-year and upper-level students. Thus, by the 

end of the first year, participants who saw the perceptual cues responded at the accurate scale, 

whereas those that didn’t have perceptual cues used a scale that was about 20% larger than it 

should have been. After the first year, participants appeared to have accurate knowledge of the 

campus’ scale with or without perceptual cues. 

Rotation. In the analysis of the rotation parameter with all participants included, there 

was a main effect of cue group, F(1, 138) = 6.64, MSE = 2200.72, 2

p = .046. There did not 

appear to be an increase in accuracy with time for this parameter, as there was not a significant 

effect of either quarter for the first year students, or class in the combined analysis. There was 

basically almost no angular difference between the actual and cognitive maps for participants of 

all ages in the cue group (-2.2
o
), whereas participants who did not have the cues had rotated the 

actual map’s coordinates by approximately 19.3
o
 counterclockwise. These results are similar to 

Kitchin and Fotheringham’s (1997) and Friedman’s (2009) findings that providing perceptual 

cues like borders improves accuracy, at least in part because the cues help participants align their 

responses properly.  
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East-West translation. There were no significant effects in any of the analyses for the 

east-west translation parameter.   

North-South translation. For the first-year students, there was a main effect of quarter, 

F(2, 87) = 6.44, MSE = 213,534.10, 2

p = .129. The campus started out too far to the north and 

moved significantly southward as a whole by the end of the first year. There were no other 

significant effects for this parameter in that analysis, nor were there significant effects in the 

combined analysis.   
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Figure Captions 

Figure 1.  Standard map of the Evanston campus of Northwestern University, available at 

http://www.northwestern.edu/academicservices/images/evanston_campus_map.gif 

Figure 2.  The response screen for the Cue Group.   The lines were not present on the no-cue 

response screen, which showed only the single X and the Northwestern University label.  

Figure 3. Pearson correlations between estimated and actual locations as a function of Cue 

Group, Quarter or Year, and Dimension (X or Y). Because Dimension was within-subjects, it 

was not obvious what to use as error bars in this situation. Across classes, the 95% confidence 

limits for the X dimension were .493 - .918 for the Cue Group and .288 - .853 for the No Cue 

Group. For the Y dimension, these limits were .792 - .972 for the Cue Group and .637 - .940 for 

the No Cue Group.  

Figure 4. Absolute errors between estimated and actual locations as a function of Cue Group, 

Quarter or Year, and Dimension (X or Y). Error bars are 95% confidence intervals computed 

across all subjects (first-year and upper-level) but separately by Cue Group (see Loftus & 

Masson, 1994). 

Figure 5. Estimated distances computed from 3 pairs of locations within each of the northern 

and southern regions and 6 pairs of locations between regions as a function of Cue Group and 

Class.  The horizontal line on the figure is the average actual distance between building pairs for 

both within- and between-category pairs. Error bars are 95% confidence intervals computed 

across all subjects (first-year and upper-level) but separately by Cue Group (see Loftus & 

Masson, 1994). 
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